Welcome to emBLOG

In December 2016, Google presented its new operating system for the Internet of Things (IoT), called Android Things.

Read more

The Beginning

The following article gives a real life example of pitfalls that developers face during their work almost every day and shows how problems can be solved by close cooperation of software and hardware developers.

It all started with a custom specific design which incorporated a CPU that was not used before. Therefore there was almost no know how available at emtrion about that CPU from former projects. Nevertheless the project was almost finished within the given time and hardware and software were working as demanded by the customer.

The only remaining issue was the startup time of the system. As often the customer complained that it lasts too long until the system was running after power up. To reduce component costs a single QSPI NOR Flash chip was used to store all software, including the Linux operating system.

The used CPU incorporates a so called “First level bootloader” which starts fetching code from the QSPI NOR Flash. This is done in 4 bit wide QSPI mode at 41.5 MHz clock. It was assumed that the startup time could be reduced by increasing the clock of the QSPI NOR Flash after the First Bootloader has finished.

Read more

I may be a microcontroller guy myself, but there are times where you need the power of a microprocessor. Having an operating system handle the memory, peripherals and events just saves time, and some applications really do need the power a microprocessor provides.

Atmel’s SAMA5D3 family has some impressive devices. Based on ARM’s A5 architecture, they has an impressive amount of peripherals and I/O lines. To name just a few, the SAMA5D36 has 3 I2C ports, 6 SPI ports, 12 12-bit ADC channels, and something you don’t see every day, 7 UART ports. This is impressive enough, but to add to that, the SAMA5D3 also has up to 160 I/O pins, each with its own interrupt. The SAMA5 series is geared towards industrial environments, automotive devices, and with Atmel’s implementation of capacitive touch peripherals, it can be used on just about any application where a user must input data.

With all that power, it isn’t surprising that the German manufacturer emtrion used this processor for one of their development boards, the SBC-SAMA5D36. They not only went with the SAMA5D36 device for its power and reliability, but also for Atmel’s reactivity when it comes to support. Atmel has worked hard on Linux implementation, and so the Linux kernel has everything you need to access every part of the processor, but I’ll get into that later on.

Read more

emtrion is pleased to announce the availability of the new processor-module based on the RZ/A1H CPU from Renesas.

The RZ processor family was designed to meet the requirements of the constantly growing market for HMI-applications. The improved GUIs of new HMI applications lead to a demand for enhanced 2D graphics functions to utilize LCD-panels with higher resolutions. The DIMM-RZ/A1H processor module with its CPU internal 10MB of SRAM is capable to operate a display at WXGA resolution without external DDR-SDRAM.

The DIMM-RZ/A1H is well-suited for applications which were formerly based on Cortex-M3/M4 CPUs and are now facing new tasks to integrate a LCD-panel, with the new demand for more RAM, 2D graphics functions and higher CPU-speed. The RZ/A1H processor includes a Video Display Controller (VDC5) with hardware accelerated 2D vector graphics (OpenVG1.1) which keeps the CPU-load low for image processing tasks.

Read more

Emtrion is pleased to announce the availability of its new SBC (Single Board Computer) based on the new SoC ‘ATSAMA5D36’ from Atmel.

The SBC is composed of a single ARM Cortex-A5 core CPU running at 536MHz, 256MB of DDR2-SDRAM, 512MB of SLC NAND Flash and 8 MB NOR Flash. The available peripherals are 2xUSB 2.0 Host, 1xUSB 2.0 Device, 1xGbit Ethernet, 1x100Mbit Ethernet, 1xLCD connector, 1xHDMI connector and more than 40 fully configurable I/Os on its expansion connectors.

With its compact size (135mm x 74mm x 15mm (LxWxH)) and its low power consumption (only 200mA @ 5V typ), the SBC-SAMA5D36 is the perfect low-power prototyping board with industry quality. Thanks to its optional extended temperature (-40°C to 85°C) and its 4 mounting holes, the board can also be directly integrated into your industrial project.

This board is targeting various industrial field applications. With its Lithium battery charger, the board can be used as battery powered device. It can also connect with several industrial busses via its expansion board: CAN, RS-232/485, Soft Modem Device, SPI, I²C… The user interaction is not only composed by 4 LEDs and 2 Push Buttons, but also with the LCD connector that can output a WVGA resolution on a 7” LCD screen with no extra external power supply for the display! And if the LCD display is too small for the application, the HDMI connection makes it possible to output on a standard PC monitor with no extra software required!

Read more

The i.MX6 series application processors from Freescale are a good choice for industrial and automotive applications requiring high multimedia performance. With the support of up to four simultaneously usable display ports the i.MX6 is also suitable for multi-display solutions or applications for high display resolutions.

Besides the conventional parallel 24-Bit RGB interface, there are also one HDMI, one MIPI DSI and two LVDS interfaces available. In this article we focus on the LVDS interfaces of the dual- and quad-core variants of the i.MX6 and explain the possible display configurations.

Read more